BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING. Alternating Current Circuits : Basic Law


 Vernon Dawson
 2 years ago
 Views:
Transcription
1 BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING Alternating Current Circuits : Basic Law Ismail Mohd Khairuddin, Zulkifil Md Yusof Faculty of Manufacturing Engineering Universiti Malaysia Pahang
2 Alternating Current Circuit (AC)Basic Laws & Circuit Techniques BFF1303 ELECTRICAL/ELECTRONICS ENGINEERING Faculty of Manufacturing Universiti Malaysia Pahang Kampus Pekan, Pahang Darul Makmur Tel: Fax: Contents: Outcome Kirchhoff s Law Series Impedances and Voltage Division Parallel Impedances and Current Division Nodal Analysis Mesh Analysis Superposition Source Transformation Thevenin and Norton Equivalent Circuit BFF1303 Electrical/Electronic Engineering 2 2
3 Draw the power triangle, and compute the capacitor size required to perform power factor correction on a load. Convert timedomain sinusoidal voltages and currents to phasor notation, and vice versa; represent circuit using impedance Learn complex power notation; compute apparent power, real, and reactive power for complex load. Solve steadystate ac circuits, using phasors and complex impedances. BFF1303 Electrical/Electronic Engineering 3 3
4 This principles used in dc analysis, are also applicable in the phasor domain. The difference is simply the voltages, currents and resistance/inductance/capacitance are converted to phasor and impedance. Kirchhoff s current law (KCL) that the algebraic sum of phasor currents entering a node (or a closed boundary) is zero. Kirchhoff s voltage law (KVL) the algebraic sum of all phasor voltages around a closed path (or loop) is zero. N I n1 n 0 M V m1 m 0 BFF1303 Electrical/Electronic Engineering 4 4
5 Consider the following figure, the same current I flow through the impedance Applying KVL around the loop BFF1303 Electrical/Electronic Engineering 5 5
6 The equivalent impedance at the input terminals V Z eq Z1 Z2 Z I Any number of impedances connected in series is the sum of the individual impedances. N If N = 2 The current through impedances I Z V Z 1 2 BFF1303 Electrical/Electronic Engineering 6 6
7 Since V Z I 1 1 V Z I 2 2 Then Z 1 2 1, Z V V V 2 V Z1 Z2 Z1 Z2 Principle of voltage division. BFF1303 Electrical/Electronic Engineering 7 7
8 The voltage across each impedance is the same. Applying KCL at top node I I1 I2 I N V Z 1 Z 2 Z N BFF1303 Electrical/Electronic Engineering 8 8
9 The equivalent impedance Z V Z Z Z eq 1 2 N When N = eq 1 1 ZZ Z Z Z Z Z BFF1303 Electrical/Electronic Engineering 9 9
10 Since V IZ I Z I Z eq The current in the impedances are Z 2 1 1, Z I I I 2 I Z1 Z2 Z1 Z2 BFF1303 Electrical/Electronic Engineering 10 10
11 Find the input impedance of the circuit shown. Assume that the circuit operates at ω = 50 rad/s Solution To get Z in, we combine resistors, resistorcapacitor and resistorinductor in series and in parallel. BFF1303 Electrical/Electronic Engineering 11 11
12 Let Z Z Z Impedance of the 2 mf capacitor Impedance of the 3 Ω resistor in series with the 10 mf capacitor Impedance of the 0.2 H inductor in series with the 8 Ω resistor Then Z Z Z j10 jc j2 jc 8 jl 8 j10 BFF1303 Electrical/Electronic Engineering 12 12
13 in in in The input impedance Z Z Z Z Z Z 3 j28 j j10 11 j j BFF1303 Electrical/Electronic Engineering 13 13
14 Determine the input impedance of the circuit in figure shown at ω = 10 rad/s. Answer Z in j BFF1303 Electrical/Electronic Engineering 14 14
15 Determine v o t for the given circuit. Solution Transform the time domain equivalent to phasor form V s V Z C j25 jc ZL jl j20 BFF1303 Electrical/Electronic Engineering 15 15
16 Let Z Z 1 2 Impedance of the 60 Ω resistor Impedance of the parallel combination of the 10 mf capacitor and the 5 H inductor Z1 60 Z2 ZC ZL j100 BFF1303 Electrical/Electronic Engineering 16 16
17 By using voltage divider V V V o o o Z Z2 Z 1 2 V j j V In time domain v t 17.15cos 4t V o BFF1303 Electrical/Electronic Engineering 17 17
18 Find v o t in the given circuit Answer v t cos 10t 105 V o BFF1303 Electrical/Electronic Engineering 18 18
19 The basis of nodal analysis is Kirchhoff s Current Law. Since KCL is valid for phasors, we can analyze ac circuit by nodal analysis. BFF1303 Electrical/Electronic Engineering 19 19
20 Find i x in the given circuit using nodal analysis Solution Convert the circuit to phasor form BFF1303 Electrical/Electronic Engineering 20 20
21 20 cos 4t 200 1H jl j4 0.5H jl j2 0.1F 1 j2.5 jc BFF1303 Electrical/Electronic Engineering 21 21
22 Applying KCL at node V 1 20 V V V V 10 j2.5 j j1.5 V j2.5v And I x = V 1 j2.5 2V V V V j2.5 j4 j V 15V Then in matrix form Applying KCL at node V 2 2I x V V V j4 j j1.5 j2.5 V V BFF1303 Electrical/Electronic Engineering 22 22
23 Then by using Cramer s Rule V 1 20 j V 1 j1.5 j j V 2 1 j V 1 j1.5 j j BFF1303 Electrical/Electronic Engineering 23 23
24 Then I x I x V A j In time domain i t 7.59 cos 4t A x BFF1303 Electrical/Electronic Engineering 24 24
25 Find v 1 and v 2 in the given circuit using nodal analysis Answer v t cos 2t V 1 2 v t cos 2t V BFF1303 Electrical/Electronic Engineering 25 25
26 Compute V 1 and V 2 in the following circuit Answer V 1 V V V BFF1303 Electrical/Electronic Engineering 26 26
27 Kirchhoff s Voltage Law form the basis of mesh analysis. Since KVL is valid for phasors, we can analyze ac circuit by mesh analysis. BFF1303 Electrical/Electronic Engineering 27 27
28 Determine I o for the given circuit by using mesh analysis. Solution Apply KVL to mesh 1 BFF1303 Electrical/Electronic Engineering 28 28
29 8 j10 j2 I j2 I j10 I 0 Apply KVL to mesh j2 j2 I j2 I j2 I For mesh 3 I3 5 Then 8 j8 I j2i j j2i 4 j4 I j BFF1303 Electrical/Electronic Engineering 29 29
30 I In matrix form By using Cramer s Rule 2 8 j8 j2 I1 j50 j2 4 j4 2 j30 I 8 j8 j50 j2 j A 8 j8 j2 68 j2 4 j4 The desired current I I o A BFF1303 Electrical/Electronic Engineering 30 30
31 Solve for V o in the following circuit using mesh analysis Answer V o V BFF1303 Electrical/Electronic Engineering 31 31
32 Thevenin and Norton theorem are applied to AC circuit in the same way as they are to DC circuits. The only additional effort arises from the need to manipulate complex number. If the circuit has sources operating at different frequencies the Thevenin or Norton equivalent circuit must be determined at each frequency. BFF1303 Electrical/Electronic Engineering 32 32
33 V Z I Z Z Th N N Th N BFF1303 Electrical/Electronic Engineering 33 33
Electric Circuits II Sinusoidal Steady State Analysis. Dr. Firas Obeidat
Electric Circuits II Sinusoidal Steady State Analysis Dr. Firas Obeidat 1 Table of Contents 1 2 3 4 5 Nodal Analysis Mesh Analysis Superposition Theorem Source Transformation Thevenin and Norton Equivalent
More informationBFF1303: ELECTRICAL / ELECTRONICS ENGINEERING
BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING Introduction Ismail Mohd Khairuddin, Zulkifil Md Yusof Faculty of Manufacturing Engineering Universiti Malaysia Pahang Introduction BFF1303 ELECTRICAL/ELECTRONICS
More informationChapter 10: Sinusoidal SteadyState Analysis
Chapter 10: Sinusoidal SteadyState Analysis 10.1 10.2 10.3 10.4 10.5 10.6 10.9 Basic Approach Nodal Analysis Mesh Analysis Superposition Theorem Source Transformation Thevenin & Norton Equivalent Circuits
More informationChapter 10 AC Analysis Using Phasors
Chapter 10 AC Analysis Using Phasors 10.1 Introduction We would like to use our linear circuit theorems (Nodal analysis, Mesh analysis, Thevenin and Norton equivalent circuits, Superposition, etc.) to
More informationChapter 10 Sinusoidal Steady State Analysis Chapter Objectives:
Chapter 10 Sinusoidal Steady State Analysis Chapter Objectives: Apply previously learn circuit techniques to sinusoidal steadystate analysis. Learn how to apply nodal and mesh analysis in the frequency
More informationSinusoidal Steady State Analysis (AC Analysis) Part I
Sinusoidal Steady State Analysis (AC Analysis) Part I Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/
More informationSinusoidal Steady State Analysis (AC Analysis) Part II
Sinusoidal Steady State Analysis (AC Analysis) Part II Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/
More informationUNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS
UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal
More informationNetwork Topology2 & Dual and Duality Choice of independent branch currents and voltages: The solution of a network involves solving of all branch currents and voltages. We know that the branch current
More informationEE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA
EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, 2006 67 pm, Room TBA First retrieve your EE2110 final and other course papers and notes! The test will be closed book
More informationLecture Notes on DC Network Theory
Federal University, NdufuAlike, Ikwo Department of Electrical/Electronics and Computer Engineering (ECE) Faculty of Engineering and Technology Lecture Notes on DC Network Theory Harmattan Semester by
More informationFall 2011 ME 2305 Network Analysis. Sinusoidal Steady State Analysis of RLC Circuits
Fall 2011 ME 2305 Network Analysis Chapter 4 Sinusoidal Steady State Analysis of RLC Circuits Engr. Humera Rafique Assistant Professor humera.rafique@szabist.edu.pk Faculty of Engineering (Mechatronics)
More informationChapter 5. Department of Mechanical Engineering
Source Transformation By KVL: V s =ir s + v By KCL: i s =i + v/r p is=v s /R s R s =R p V s /R s =i + v/r s i s =i + v/r p Two circuits have the same terminal voltage and current Source Transformation
More informationChapter 10: Sinusoidal SteadyState Analysis
Chapter 10: Sinusoidal SteadyState Analysis 1 Objectives : sinusoidal functions Impedance use phasors to determine the forced response of a circuit subjected to sinusoidal excitation Apply techniques
More informationChapter 9 Objectives
Chapter 9 Engr8 Circuit Analysis Dr Curtis Nelson Chapter 9 Objectives Understand the concept of a phasor; Be able to transform a circuit with a sinusoidal source into the frequency domain using phasor
More informationSINUSOIDAL STEADY STATE CIRCUIT ANALYSIS
SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS 1. Introduction A sinusoidal current has the following form: where I m is the amplitude value; ω=2 πf is the angular frequency; φ is the phase shift. i (t )=I m.sin
More information4/27 Friday. I have all the old homework if you need to collect them.
4/27 Friday Last HW: do not need to turn it. Solution will be posted on the web. I have all the old homework if you need to collect them. Final exam: 79pm, Monday, 4/30 at Lambert Fieldhouse F101 Calculator
More informationSinusoids and Phasors
CHAPTER 9 Sinusoids and Phasors We now begins the analysis of circuits in which the voltage or current sources are timevarying. In this chapter, we are particularly interested in sinusoidally timevarying
More informationThevenin Norton Equivalencies  GATE Study Material in PDF
Thevenin Norton Equivalencies  GATE Study Material in PDF In these GATE 2018 Notes, we explain the Thevenin Norton Equivalencies. Thevenin s and Norton s Theorems are two equally valid methods of reducing
More informationChapter 10: Sinusoids and Phasors
Chapter 10: Sinusoids and Phasors 1. Motivation 2. Sinusoid Features 3. Phasors 4. Phasor Relationships for Circuit Elements 5. Impedance and Admittance 6. Kirchhoff s Laws in the Frequency Domain 7. Impedance
More informationD C Circuit Analysis and Network Theorems:
UNIT1 D C Circuit Analysis and Network Theorems: Circuit Concepts: Concepts of network, Active and passive elements, voltage and current sources, source transformation, unilateral and bilateral elements,
More informationSeries & Parallel Resistors 3/17/2015 1
Series & Parallel Resistors 3/17/2015 1 Series Resistors & Voltage Division Consider the singleloop circuit as shown in figure. The two resistors are in series, since the same current i flows in both
More informationAC Circuit Analysis and Measurement Lab Assignment 8
Electric Circuit Lab Assignments elcirc_lab87.fm  1 AC Circuit Analysis and Measurement Lab Assignment 8 Introduction When analyzing an electric circuit that contains reactive components, inductors and
More informationLecture #3. Review: Power
Lecture #3 OUTLINE Power calculations Circuit elements Voltage and current sources Electrical resistance (Ohm s law) Kirchhoff s laws Reading Chapter 2 Lecture 3, Slide 1 Review: Power If an element is
More informationCircuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer
Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer J. McNames Portland State University ECE 221 Circuit Theorems Ver. 1.36 1
More informationBasic. Theory. ircuit. Charles A. Desoer. Ernest S. Kuh. and. McGrawHill Book Company
Basic C m ш ircuit Theory Charles A. Desoer and Ernest S. Kuh Department of Electrical Engineering and Computer Sciences University of California, Berkeley McGrawHill Book Company New York St. Louis San
More informationChapter 1W Basic Electromagnetic Concepts
Chapter 1W Basic Electromagnetic Concepts 1W Basic Electromagnetic Concepts 1W.1 Examples and Problems on Electric Circuits 1W.2 Examples on Magnetic Concepts This chapter includes additional examples
More informationBasic Electrical Circuits Analysis ECE 221
Basic Electrical Circuits Analysis ECE 221 PhD. Khodr Saaifan http://trsys.faculty.jacobsuniversity.de k.saaifan@jacobsuniversity.de 1 2 Reference: Electric Circuits, 8th Edition James W. Nilsson, and
More informationDC STEADY STATE CIRCUIT ANALYSIS
DC STEADY STATE CIRCUIT ANALYSIS 1. Introduction The basic quantities in electric circuits are current, voltage and resistance. They are related with Ohm s law. For a passive branch the current is: I=
More informationKirchhoff's Laws and Circuit Analysis (EC 2)
Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for I and V at each element Linear circuits: involve resistors, capacitors, inductors Initial analysis uses only resistors Power sources,
More informationHomework 2 SJTU233. Part A. Part B. Problem 2. Part A. Problem 1. Find the impedance Zab in the circuit seen in the figure. Suppose that R = 5 Ω.
Homework 2 SJTU233 Problem 1 Find the impedance Zab in the circuit seen in the figure. Suppose that R = 5 Ω. Express Zab in polar form. Enter your answer using polar notation. Express argument in degrees.
More informationPOLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems
POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems Modified for Physics 18, Brooklyn College I. Overview of Experiment In this
More informationMAE140  Linear Circuits  Fall 14 Midterm, November 6
MAE140  Linear Circuits  Fall 14 Midterm, November 6 Instructions (i) This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may use a
More informationBASIC NETWORK ANALYSIS
SECTION 1 BASIC NETWORK ANALYSIS A. Wayne Galli, Ph.D. Project Engineer Newport News Shipbuilding SeriesParallel dc Network Analysis......................... 1.1 BranchCurrent Analysis of a dc Network......................
More informationFundamentals of Electric Circuits, Second Edition  Alexander/Sadiku
Chapter 3, Problem 9(8). Find V x in the network shown in Fig. 3.78. Figure 3.78 Chapter 3, Solution 9(8). Consider the circuit below. 2 Ω 2 Ω j 8 30 o I j 4 j 4 I 2 j2v For loop, 8 30 = (2 j4)i ji 2
More informationChapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson
Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and
More informationElectric Circuit Theory
Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 01094192320 Chapter 18 TwoPort Circuits Nam Ki Min nkmin@korea.ac.kr 01094192320 Contents and Objectives 3 Chapter Contents 18.1 The Terminal Equations
More informationSinusoidal Response of RLC Circuits
Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit RL Series Circuit RL Series Circuit RL Series Circuit Instantaneous
More informationElectric Circuits I Final Examination
EECS:300 Electric Circuits I ffs_elci.fm  Electric Circuits I Final Examination Problems Points. 4. 3. Total 38 Was the exam fair? yes no //3 EECS:300 Electric Circuits I ffs_elci.fm  Problem 4 points
More informationElectric Circuits I. Nodal Analysis. Dr. Firas Obeidat
Electric Circuits I Nodal Analysis Dr. Firas Obeidat 1 Nodal Analysis Without Voltage Source Nodal analysis, which is based on a systematic application of Kirchhoff s current law (KCL). A node is defined
More informationModule 2. DC Circuit. Version 2 EE IIT, Kharagpur
Module 2 DC Circuit Lesson 5 Nodevoltage analysis of resistive circuit in the context of dc voltages and currents Objectives To provide a powerful but simple circuit analysis tool based on Kirchhoff s
More informationNetwork Graphs and Tellegen s Theorem
Networ Graphs and Tellegen s Theorem The concepts of a graph Cut sets and Kirchhoff s current laws Loops and Kirchhoff s voltage laws Tellegen s Theorem The concepts of a graph The analysis of a complex
More informationENGG 225. David Ng. Winter January 9, Circuits, Currents, and Voltages... 5
ENGG 225 David Ng Winter 2017 Contents 1 January 9, 2017 5 1.1 Circuits, Currents, and Voltages.................... 5 2 January 11, 2017 6 2.1 Ideal Basic Circuit Elements....................... 6 3 January
More information3.1 Superposition theorem
Many electric circuits are complex, but it is an engineer s goal to reduce their complexity to analyze them easily. In the previous chapters, we have mastered the ability to solve networks containing independent
More information1. Review of Circuit Theory Concepts
1. Review of Circuit Theory Concepts Lecture notes: Section 1 ECE 65, Winter 2013, F. Najmabadi Circuit Theory is an pproximation to Maxwell s Electromagnetic Equations circuit is made of a bunch of elements
More informationCHAPTER FOUR CIRCUIT THEOREMS
4.1 INTRODUCTION CHAPTER FOUR CIRCUIT THEOREMS The growth in areas of application of electric circuits has led to an evolution from simple to complex circuits. To handle the complexity, engineers over
More informationEE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following timedomain circuit to the RMS Phasor Domain.
Name If you have any questions ask them. Remember to include all units on your answers (V, A, etc). Clearly indicate your answers. All angles must be in the range 0 to +180 or 0 to 180 degrees. 1) [6 pts]
More informationPrerequisites: Successful completion of PHYS 2222 General Physics (Calculus) with a grade of C or better.
Prepared by: P. Blake Reviewed by: M. Mayfield Date prepared: March 13, 2017 C&GE approved: April 17, 2017 Board approved: May 10, 2017 Semester effective: Spring 2018 Engineering (ENGR) 2000 Circuit Analysis
More information11. AC Circuit Power Analysis
. AC Circuit Power Analysis Often an integral part of circuit analysis is the determination of either power delivered or power absorbed (or both). In this chapter First, we begin by considering instantaneous
More informationElectric Circuit Theory
Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 01094192320 Chapter 11 Sinusoidal SteadyState Analysis Nam Ki Min nkmin@korea.ac.kr 01094192320 Contents and Objectives 3 Chapter Contents 11.1
More informationQUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34)
QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) NOTE: FOR NUMERICAL PROBLEMS FOR ALL UNITS EXCEPT UNIT 5 REFER THE EBOOK ENGINEERING CIRCUIT ANALYSIS, 7 th EDITION HAYT AND KIMMERLY. PAGE NUMBERS OF
More informationECE2262 Electric Circuits
ECE2262 Electric Circuits Equivalence Chapter 5: Circuit Theorems Linearity Superposition Thevenin s and Norton s Theorems Maximum Power Transfer Analysis of Circuits Using Circuit Theorems 1 5. 1 Equivalence
More informationPhasors: Impedance and Circuit Anlysis. Phasors
Phasors: Impedance and Circuit Anlysis Lecture 6, 0/07/05 OUTLINE Phasor ReCap Capacitor/Inductor Example Arithmetic with Complex Numbers Complex Impedance Circuit Analysis with Complex Impedance Phasor
More informationChapter 5 SteadyState Sinusoidal Analysis
Chapter 5 SteadyState Sinusoidal Analysis Chapter 5 SteadyState Sinusoidal Analysis 1. Identify the frequency, angular frequency, peak value, rms value, and phase of a sinusoidal signal. 2. Solve steadystate
More informationSolution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1.
Problem 1.24 The plot in Fig. P1.24 displays the cumulative charge q(t) that has entered a certain device up to time t. Sketch a plot of the corresponding current i(t). q 20 C 0 1 2 3 4 5 t (s) 20 C Figure
More informationFundamental of Electrical circuits
Fundamental of Electrical circuits 1 Course Description: Electrical units and definitions: Voltage, current, power, energy, circuit elements: resistors, capacitors, inductors, independent and dependent
More informationElectric Circuits I FINAL EXAMINATION
EECS:300, Electric Circuits I s6fs_elci7.fm  Electric Circuits I FINAL EXAMINATION Problems Points.. 3. 0 Total 34 Was the exam fair? yes no 5//6 EECS:300, Electric Circuits I s6fs_elci7.fm  Problem
More informationTo find the step response of an RC circuit
To find the step response of an RC circuit v( t) v( ) [ v( t) v( )] e tt The time constant = RC The final capacitor voltage v() The initial capacitor voltage v(t ) To find the step response of an RL circuit
More informationNotes on Electric Circuits (Dr. Ramakant Srivastava)
Notes on Electric ircuits (Dr. Ramakant Srivastava) Passive Sign onvention (PS) Passive sign convention deals with the designation of the polarity of the voltage and the direction of the current arrow
More informationPreamble. Circuit Analysis II. Mesh Analysis. When circuits get really complex methods learned so far will still work,
Preamble Circuit Analysis II Physics, 8 th Edition Custom Edition Cutnell & Johnson When circuits get really complex methods learned so far will still work, but they can take a long time to do. A particularly
More informationNETWORK ANALYSIS WITH APPLICATIONS
NETWORK ANALYSIS WITH APPLICATIONS Third Edition William D. Stanley Old Dominion University Prentice Hall Upper Saddle River, New Jersey I Columbus, Ohio CONTENTS 1 BASIC CIRCUIT LAWS 1 11 General Plan
More informationEIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1
EIT Review Electrical Circuits DC Circuits Lecturer: Russ Tatro Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1 Session Outline Basic Concepts Basic Laws Methods of Analysis Circuit
More information= 32.0\cis{38.7} = j Ω. Zab = Homework 2 SJTU233. Part A. Part B. Problem 2. Part A. Problem 1
Homework 2 SJTU233 Problem 1 Find the impedance Zab in the circuit seen in the figure. Suppose that R = 5 Ω. Express Zab in polar form. Enter your answer using polar notation. Express argument in degrees.
More informationECE2262 Electric Circuits. Chapter 5: Circuit Theorems
ECE2262 Electric Circuits Chapter 5: Circuit Theorems 1 Equivalence Linearity Superposition Thevenin s and Norton s Theorems Maximum Power Transfer Analysis of Circuits Using Circuit Theorems 2 5. 1 Equivalence
More informationELEC 250: LINEAR CIRCUITS I COURSE OVERHEADS. These overheads are adapted from the Elec 250 Course Pack developed by Dr. Fayez Guibaly.
Elec 250: Linear Circuits I 5/4/08 ELEC 250: LINEAR CIRCUITS I COURSE OVERHEADS These overheads are adapted from the Elec 250 Course Pack developed by Dr. Fayez Guibaly. S.W. Neville Elec 250: Linear Circuits
More informationEE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2
EE 4: Introduction to Microelectronic Circuits Spring 8: Midterm Venkat Anantharam 3/9/8 Total Time Allotted : min Total Points:. This is a closed book exam. However, you are allowed to bring two pages
More informationMidterm Exam (closed book/notes) Tuesday, February 23, 2010
University of California, Berkeley Spring 2010 EE 42/100 Prof. A. Niknejad Midterm Exam (closed book/notes) Tuesday, February 23, 2010 Guidelines: Closed book. You may use a calculator. Do not unstaple
More informationLINEAR CIRCUIT ANALYSIS (EED) U.E.T. TAXILA 09
LINEAR CIRCUIT ANALYSIS (EED) U.E.T. TAXILA 09 ENGR. M. MANSOOR ASHRAF INTRODUCTION Thus far our analysis has been restricted for the most part to dc circuits: those circuits excited by constant or timeinvariant
More informationECE 201 Fall 2009 Final Exam
ECE 01 Fall 009 Final Exam December 16, 009 Division 0101: Tan (11:30am) Division 001: Clark (7:30 am) Division 0301: Elliott (1:30 pm) Instructions 1. DO NOT START UNTIL TOLD TO DO SO.. Write your Name,
More informationChapter 5: Circuit Theorems
Chapter 5: Circuit Theorems This chapter provides a new powerful technique of solving complicated circuits that are more conceptual in nature than node/mesh analysis. Conceptually, the method is fairly
More informationThree Phase Circuits
Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/ OUTLINE Previously on ELCN102 Three Phase Circuits Balanced
More informationBasics of Network Theory (PartI)
Basics of Network Theory (PartI). A square waveform as shown in figure is applied across mh ideal inductor. The current through the inductor is a. wave of peak amplitude. V 0 0.5 t (m sec) [Gate 987: Marks]
More informationMAE140  Linear Circuits  Winter 09 Midterm, February 5
Instructions MAE40  Linear ircuits  Winter 09 Midterm, February 5 (i) This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may use a
More informationElectric Circuits I. Midterm #1
The University of Toledo Section number s5ms_elci7.fm  Electric Circuits I Midterm # Problems Points. 3 2. 7 3. 5 Total 5 Was the exam fair? yes no The University of Toledo Section number s5ms_elci7.fm
More informationPhysics 116A Notes Fall 2004
Physics 116A Notes Fall 2004 David E. Pellett Draft v.0.9 Notes Copyright 2004 David E. Pellett unless stated otherwise. References: Text for course: Fundamentals of Electrical Engineering, second edition,
More informationVoltage Dividers, Nodal, and Mesh Analysis
Engr228 Lab #2 Voltage Dividers, Nodal, and Mesh Analysis Name Partner(s) Grade /10 Introduction This lab exercise is designed to further your understanding of the use of the lab equipment and to verify
More informationUNIVERSITY OF TECHNOLOGY, JAMAICA Faculty of Engineering and Computing School of Engineering
UNIVERSITY OF TECHNOLOGY, JAMAICA Faculty of Engineering and Computing School of Engineering SYLLABUS OUTLINE FACULTY: SCHOOL/DEPT: COURSE OF STUDY: Engineering and Computing Engineering Diploma in Electrical
More information1.7 DeltaStar Transformation
S Electronic ircuits D ircuits 8.7 DeltaStar Transformation Fig..(a) shows three resistors R, R and R connected in a closed delta to three terminals, and, their numerical subscripts,, and, being opposite
More informationEIE/ENE 104 Electric Circuit Theory
EIE/ENE 104 Electric Circuit Theory Lecture 01a: Circuit Analysis and Electrical Engineering Week #1 : Dejwoot KHAWPARISUTH office: CB40906 Tel: 024709065 Email: dejwoot.kha@kmutt.ac.th http://webstaff.kmutt.ac.th/~dejwoot.kha/
More informationBasic RL and RC Circuits RL TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri
st Class Basic RL and RC Circuits The RL circuit with D.C (steady state) The inductor is short time at Calculate the inductor current for circuits shown below. I L E R A I L E R R 3 R R 3 I L I L R 3 R
More informationELEC 202 Electric Circuit Analysis II Lecture 10(a) Complex Arithmetic and Rectangular/Polar Forms
Dr. Gregory J. Mazzaro Spring 2016 ELEC 202 Electric Circuit Analysis II Lecture 10(a) Complex Arithmetic and Rectangular/Polar Forms THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA 171 Moultrie Street,
More informationSinusoidal SteadyState Analysis
Chapter 4 Sinusoidal SteadyState Analysis In this unit, we consider circuits in which the sources are sinusoidal in nature. The review section of this unit covers most of section 9.1 9.9 of the text.
More informationChapter 10: Sinusoidal SteadyState Analysis
Chapter 0: Sinusoidal SteadyState Analysis Sinusoidal Sources If a circuit is driven by a sinusoidal source, after 5 tie constants, the circuit reaches a steadystate (reeber the RC lab with t = τ). Consequently,
More informationCircuit AnalysisIII. Circuit AnalysisII Lecture # 3 Friday 06 th April, 18
Circuit AnalysisIII Sinusoids Example #1 ü Find the amplitude, phase, period and frequency of the sinusoid: v (t ) =12cos(50t +10 ) Signal Conversion ü From sine to cosine and vice versa. ü sin (A ± B)
More informationSinusoidal Steady State Analysis
Sinusoidal Steady State Analysis 9 Assessment Problems AP 9. [a] V = 70/ 40 V [b] 0 sin(000t +20 ) = 0 cos(000t 70 ).. I = 0/ 70 A [c] I =5/36.87 + 0/ 53.3 =4+j3+6 j8 =0 j5 =.8/ 26.57 A [d] sin(20,000πt
More informationResistor. l A. Factors affecting the resistance are 1. Crosssectional area, A 2. Length, l 3. Resistivity, ρ
Chapter 2 Basic Laws. Ohm s Law 2. Branches, loops and nodes definition 3. Kirchhoff s Law 4. Series resistors circuit and voltage division. 5. Equivalent parallel circuit and current division. 6. WyeDelta
More informationLecture # 2 Basic Circuit Laws
CPEN 206 Linear Circuits Lecture # 2 Basic Circuit Laws Dr. Godfrey A. Mills Email: gmills@ug.edu.gh Phone: 026907363 February 5, 206 Course TA David S. Tamakloe CPEN 206 Lecture 2 205_206 What is Electrical
More informationNotes for course EE1.1 Circuit Analysis TOPIC 10 2PORT CIRCUITS
Objectives: Introduction Notes for course EE1.1 Circuit Analysis 45 Reexamination of 1port subcircuits Admittance parameters for port circuits TOPIC 1 PORT CIRCUITS Gain and port impedance from port
More informationElectrical Circuit & Network
Electrical Circuit & Network January 1 2017 Website: www.electricaledu.com Electrical Engg.(MCQ) Question and Answer for the students of SSC(JE), PSC(JE), BSNL(JE), WBSEDCL, WBSETCL, WBPDCL, CPWD and State
More informationCircuit Analysis. by John M. Santiago, Jr., PhD FOR. Professor of Electrical and Systems Engineering, Colonel (Ret) USAF. A Wiley Brand FOR
Circuit Analysis FOR A Wiley Brand by John M. Santiago, Jr., PhD Professor of Electrical and Systems Engineering, Colonel (Ret) USAF FOR A Wiley Brand Table of Contents. ' : '" '! " ' ' '... ',. 1 Introduction
More informationChapter 4. Techniques of Circuit Analysis
Chapter 4. Techniques of Circuit Analysis By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical Engineering, K.N. Toosi University of Technology http://wp.kntu.ac.ir/faradji/electriccircuits1.htm Reference:
More informationECE 1311: Electric Circuits. Chapter 2: Basic laws
ECE 1311: Electric Circuits Chapter 2: Basic laws Basic Law Overview Ideal sources series and parallel Ohm s law Definitions open circuits, short circuits, conductance, nodes, branches, loops Kirchhoff's
More information09/29/2009 Reading: Hambley Chapter 5 and Appendix A
EE40 Lec 10 Complex Numbers and Phasors Prof. Nathan Cheung 09/29/2009 Reading: Hambley Chapter 5 and Appendix A Slide 1 OUTLINE Phasors as notation for Sinusoids Arithmetic with Complex Numbers Complex
More informationTwoPort Networks Admittance Parameters CHAPTER16 THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO:
CHAPTER16 TwoPort Networks THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO: Calculate the admittance, impedance, hybrid, and transmission parameter for twoport networks. Convert
More informationCOOKBOOK KVL AND KCL A COMPLETE GUIDE
1250 COOKBOOK KVL AND KCL A COMPLETE GUIDE Example circuit: 1) Label all source and component values with a voltage drop measurement (+, ) and a current flow measurement (arrow): By the passive sign convention,
More informationAC analysis  many examples
AC analysis  many examples The basic method for AC analysis:. epresent the AC sources as complex numbers: ( ). Convert resistors, capacitors, and inductors into their respective impedances: resistor Z
More informationElectric Current. Note: Current has polarity. EECS 42, Spring 2005 Week 2a 1
Electric Current Definition: rate of positive charge flow Symbol: i Units: Coulombs per second Amperes (A) i = dq/dt where q = charge (in Coulombs), t = time (in seconds) Note: Current has polarity. EECS
More informationReview of Circuit Analysis
Review of Circuit Analysis Fundamental elements Wire Resistor Voltage Source Current Source Kirchhoff s Voltage and Current Laws Resistors in Series Voltage Division EE 42 Lecture 2 1 Voltage and Current
More informationBasics of Electric Circuits
António Dente Célia de Jesus February 2014 1 Alternating Current Circuits 1.1 Using Phasors There are practical and economic reasons justifying that electrical generators produce emf with alternating and
More informationChapter 3. Loop and Cutset Analysis
Chapter 3. Loop and Cutset Analysis By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical Engineering, K.N. Toosi University of Technology http://wp.kntu.ac.ir/faradji/electriccircuits2.htm References:
More information